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Machine v ibrat ion  measurement

Unlike most process measurements, the measurement of a rotating machine’s vibration  is primarily 
for the benefit of the process equipment rather than the process itself. Vibration monitoring on an 
ammonia vapor compressor, for instance, may very well be useful in extending the  operating life  of 
the compressor, but it offers little benefit to the control of the ammonia vapor.

Nevertheless,  the  prevalence of machine  vibration  measurement technology  is  so widespread 
in the process industries that it cannot be overlooked by the instrument technician. Rotating 
machinery equipped with vibration sensors are often controlled  by protection  equipment  designed 
to automatically shut down the machine in the event of excessive vibration. The configuration and 
maintenance of this protection equipment, and the sensors feeding vibration data to it, is often the 
domain of instrument technicians.

24.1 V i b rat i o n  physics

One very convenient feature of waves is that their properties are universal. Waves of water in the 
ocean, sound waves in air, electronic signal waveforms, and even waves of mechanical vibration may 
all be expressed in mathematical form using the trigonometric sine and cosine functions. This means 
the same tools (both mathematical and technological) may be applied to the analysis of different 
kinds of waves. A  strong example of this is the Fourier Transform, used to determine the frequency 
spectrum of a waveform, which may be applied with equal validity to any kind of wave1.

1The “spectrum analyzer”  display often seen on high-quality audio reproduction equipment such as stereo equalizers 
and amplifiers is an example of the Fourier Transform applied to music. This  exact same technology may be applied 
to the analysis of  a machine’s vibration to indicate sources  of  vibration, since different components of  a machine tend 

to generate vibratory waves of differing frequencies.
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1876 C H A P T E R  24. M A C H I N E  V I B R A T I O N  M E A S U R E M E N T

Off-center mass

Displacement sensor 

wires

24.1.1 Sinusoidal vibrations

If a rotating wheel is unbalanced by the presence of an off-center mass, the resulting vibration will 
take the form of a cosine wave as measured by a displacement (position) sensor near the periphery 
of the object (assuming an angle of zero is defined by the position of the displacement sensor). The 
displacement sensor measures the air gap between the sensor tip and the rim of the spinning wheel, 
generating an electronic signal (most likely a voltage) directly proportional to that gap:

Rotating wheel

TimeDisplacement

Cosine wave
Near

Far

Since the wheel’s shaft “bows” in the direction of the off-center mass as it spins, the gap between 
the wheel and the sensor will be at a minimum at 0o, and maximum at 180o.
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24.1.  V I B R A T I O N  P H Y S I C S 1877

We may begin to express this phenomenon mathematically using the cosine function:

x  =  D  cos ωt +  b

Where,
x  =  Displacement as measured by sensor at time t 
D  =  Peak displacement amplitude
ω =  Angular velocity (typically expressed in units of radians per second)
b =  “Bias”  air gap measured with no vibration
t =  Time (seconds)

Since the cosine function alternates between extreme values of + 1  and −1, the constant D  is 
necessary in the formula as a coefficient relating the cosine function to peak displacement. The cosine 
function’s argument (i.e.  the angle given to it) deserves some explanation as well: the product ωt is 
the multiple of angular velocity and time, angular velocity typically measured in radians per second 
and time typically measured in seconds. The product ωt, then, has a unit of radians.  At time=0 
(when the mass is aligned with the sensor), the product ωt is zero and the cosine’s value is +1.

For a wheel spinning at 1720 R P M  (approximately 180.1 radians per second), the angle between 
the off-center mass and the sensor will be as follows:

T i m e A n g l e  (radians) A n g l e  (degrees) cos ωt
0 ms 0 rad 0o + 1

8.721 ms
π  rad
2 90o 0

17.44 ms π rad 180o −1
26.16 ms

3π rad
2 270o 0

34.88 ms 0 rad 360o or 0o + 1

We know from physics that velocity is the time-derivative of displacement. That is, velocity is 
defined as the rate at which displacement changes over time. Mathematically, we may express this 
relationship using the calculus notation of the derivative:

v =
dx  d

dt dt
or v =  (x )

Where,
v =  Velocity of an object
x  =  Displacement (position) of an object
t =  Time
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1878 C H A P T E R  24. M A C H I N E  V I B R A T I O N  M E A S U R E M E N T

Since we happen to know the equation describing displacement (x )  in this system, we may 
differentiate this equation to arrive at an equation for velocity:

dx  d
v =  =  (D  cos ωt +  b)

dt dt

Applying the differentiation rule that the derivative of a sum is the sum of the derivatives:

d d

dt dt
v =  (D  cos ωt)  +  b

Recall that D ,  ω, and b are all constants in this equation. The only variable here is t, which 
we are differentiating with respect to. We know from calculus that the derivative of a simple cosine

d 
dx

function is a negative sine (  cos x  =  −  sin x), and that the presence of a constant multiplier in the
2     d 

dx
cosine’s argument results in that multiplier applied to the entire derivative  (  cos ax  =  − a sin ax ).

dx
We also know that the derivative of any constant is simply zero ( d C  =  0), which eliminates the b
term:

v =  − ωD  sin ωt

What this equation tells us is that for any given amount of peak displacement (D ) ,  the velocity 
of the wheel’s “wobble” increases linearly with speed (ω).  This should not surprise us,  since  we 
know an increase in rotational speed would mean the wheel displaces the same vibrating distance in 
less time, which would necessitate a higher velocity of vibration.

We may take the process one step further by differentiating the equation again with respect to 
time in order to arrive at an equation describing the vibrational acceleration of the wheel’s rim,

dt
since we know acceleration is the time-derivative of velocity (a =  dv ):

dv d
a =   =   (− ωD  sin ωt)  

dt  dt

From calculus, we know that the derivative of a sine function is a cosine function ( d sin x  =d x

cos x), and the same rule regarding constant multipliers in the function’s argument applies here as

dx
well (  d sin ax  =  a cos ax ):

2
a =  − ω D  cos ωt

What this equation tells us is that for any given amount of peak displacement (D ) ,   the 
acceleration of the wheel’s “wobble” increases with the square of the speed (ω). This is of great 
importance to us, since we know the lateral force imparted to the wheel (and shaft) is proportional 
to the lateral acceleration and also the mass of the wheel, from Newton’s Second Law of Motion:

F  =  ma

2This rule makes intuitive sense as well: if a sine or cosine wave increases frequency while maintaining a constant 
peak-to-peak amplitude, the rate of its rise and fall must increase as well,  since  the higher frequency represents  less 
time (shorter period) for the wave to travel the same amplitude. Since the derivative is the rate of change of the 

waveform, this means the derivative of a waveform must increase with that waveform’s frequency.
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24.1.  V I B R A T I O N  P H Y S I C S  1879

Therefore, the vibrational force experienced by this wheel grows rapidly as rotational speed 
increases:

F  =  ma =  − mω2D  cos ωt

This is  why  vibration  can  be so terribly  destructive  to  high-speed  rotating  machinery. Even 
a small amount of lateral displacement caused by a mass imbalance or other effect may generate 
enormous forces on the rotating part(s), as these forces grow with the square of the rotating speed 
(e.g.  doubling the speed quadruples the force; tripling the speed increases force by 9 times).  Worse 
yet, these proportions assume a constant displacement (D ) ,  which is a best-case scenario. More 
realistically, we may expect the displacement to actually increase, as the centrifugal force generated 
by the off-center mass bends the rotating shaft to place the mass even farther away from the shaft 
centerline. Thus, doubling or tripling an imbalanced machine’s speed may multiply vibrational forces 
well in excess of four or nine times, respectively.

In the United States, it is customary to measure vibrational displacement ( D )  in units of mils,

with one “mil” being 1   of an inch (0.001 inch). Vibrational velocity is measured in inches per1000

second, following the displacement unit of the inch. Acceleration, although it could be expressed
in units of inches per second squared, is more often represented in the unit of the G :  a multiple of 
Earth’s own gravitational acceleration.

To give perspective to these units, it is helpful to consider a real application. Suppose we have a
rotating machine vibrating in a sinusoidal (sine- or cosine-shaped) manner with a peak displacement

( D )  of 2 mils (0.002 inch) at a rotating speed of 1720 R P M  (revolutions per minute). The frequency 
of this rotation is 28.667 Hz (revolutions per second ), or 180.1 radians per second:

Time

T = 34.88 ms

f = 1720 RPM = 28.667 Hz

 = 2f = 180.1 rad/s

D = 0.002 in
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1880 C H A P T E R  24. M A C H I N E  V I B R A T I O N  M E A S U R E M E N T

If D  is the peak displacement of the sinusoid, then ωD  must be the peak velocity (maximum 
rate-of-change over time) of the sinusoid3. This yields a peak velocity of 0.360 inches per second:

D = 0.002 in

Time

 = 2f = 180.1 rad/s

dt
dx (max.) = D = 0.360 in/s

dx

dt

We may apply differentiation once more to obtain the acceleration of this machine’s rotating 
element. If D  is the peak displacement of the  sinusoid, and ωD  the  peak velocity,  then ω2D will be 
its peak acceleration.

D  =  Peak displacement =  0.002 in

ωD  =  Peak velocity =  0.360 in/s

ω2D =  Peak acceleration =  64.9 in/s2

The average value of Earth’s gravitational acceleration (g) is 32.17 feet per second squared. This 
equates to about 386 inches per second squared. Since our machine’s peak vibrational acceleration 
is 64.9 inches per second squared, this may be expressed as a “G”  ratio to Earth’s gravity:

64.9 in/s2

2  =  0.168 G’s of peak acceleration
386 in/s

Using “G’s” as a unit of acceleration makes it very easy to calculate forces imparted to  the 
rotating element. If the machine’s rotating piece weighs 1200 pounds (in 1 “G”  of Earth gravity), 
then the force imparted to  this piece by the  vibrational acceleration  of 0.168 G’s will be 16.8% of 
its weight, or 201.7 pounds.

3Recall that the derivative of the sinusoidal function sin ωt is equal to ω cos ωt, and that the second derivative of 
sin ωt is equal to −ω2 sin ωt. With each  differentiation,  the constant of  angular velocity (ω)  is applied as a multiplier 

to the entire function.
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24.1. V I B R A T I O N  P H Y S I C S

24.1.2 Non-sinusoidal vibrations

1881

Normal machine vibrations rarely take the form of perfect sinusoidal waves. Although typical 
vibration waveforms are periodic (i.e. they repeat a pattern over time), they usually do not resemble 
sine or cosine waves in their shape:

A periodic, non-sinusoidal waveform

An unfortunate quality of non-sinusoidal waveforms is that they do not lend themselves as readily 
to mathematical analysis as sinusoidal waves. From the previous discussion on sinusoidal vibrations,
we saw how simple it was to take the derivative of a sinusoidal waveform ( d sin ωt =  ω cos ωt), anddt

how well this worked to predict velocity and acceleration from a function describing displacement.
Most non-sinusoidal waveforms cannot be expressed as simply and neatly as sin ωt, however, and as 
such are not as easy to mathematically analyze.

Fortunately, though, there is a way to represent non-sinusoidal waveforms as combinations of
sinusoidal waveforms. The French mathematician and physicist Jean Baptiste Joseph Fourier (1768- 
1830) proved mathematically that any periodic waveform, no matter how strange or asymmetrical its 
shape may be, may be replicated by a specific sum of sine and cosine waveforms of integer-multiple 
frequencies. That is, any periodic waveform (a periodic function of time, f  (ωt) being the standard 
mathematical expression) is equivalent to a series of the following form4:

f  (ωt) =  A1  cos ωt +  B 1  sin ωt +  A2  cos 2ωt +  B 2  sin 2ωt +  · · · A n  cos nωt +  B n  sin nωt

Here, ω represents the fundamental frequency of the waveform, while multiples of ω (e.g. 2ω, 3ω, 
4ω, etc.) represent harmonic or overtone frequencies of that fundamental. The A  and B  coefficients 
describe the amplitudes  (heights) of each sinusoid.  We may break down a typical Fourier series in 
table form, labeling each term according to frequency:

Terms Harmonic Overtone
A1 cos ωt + B1 sin ωt 1st harmonic Fundamental

A2 cos 2ωt + B2 sin 2ωt 2nd harmonic 1st overtone
A3 cos 3ωt + B3 sin 3ωt 3rd harmonic 2nd overtone
A4 cos 4ωt + B4 sin 4ωt 4th harmonic 3rd overtone
An cos nωt + Bn sin nωt nth harmonic (n −  1)th overtone

One of the most visually convincing examples of Fourier’s theorem is the ability to describe a 
square wave as a series of sine waves. Intuition would suggest it is impossible to synthesize a sharp- 
edged waveform such as a square wave using nothing but rounded sinusoids, but it is indeed possible 
if one combines an infinite series of sinusoids of successively higher harmonic frequencies, given just 
the right combination of harmonic frequencies and amplitudes.

4There is an additional term missing in this Fourier series, and that is the “DC ”  or “bias” term A0.  Many non- 
sinusoidal waveforms having peak values centered about zero on a graph or oscilloscope display actually have average 
values that are non-zero, and the A0 term accounts for this. However, this is usually not relevant in discussions of 

machine vibration, which is why I  have opted to present the simplified Fourier series here.
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1882 C H A P T E R  24. M A C H I N E  V I B R A T I O N  M E A S U R E M E N T

The Fourier series for a square wave is as follows:

1 1 1
Square wave =  1 sin ωt +  sin 3ωt +  sin 5ωt +  sin 7ωt +  · · ·

3 5 7

Such a series would be impossible to numerically calculate, but we may approximate it by adding 
several of the first (largest) harmonics together to see the resulting shape. In each of the following 
plots, we see the individual harmonic waveforms plotted in red, with the sum plotted in blue:

1 s t  +  3 r d
1 s t  h a r m o n i  

1 s t  +  3 r d  +  5 t h 1 s t  +  3 r d  +  5 t h  +  7 t h
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24.1.  V IB R AT ION  P HY SIC S  1883

If we continue this pattern up to the 13th harmonic (following the same pattern of diminishing 
reciprocal amplitudes shown in the Fourier series for a square wave), we see the resultant sum looking 
more like a square wave:

1 s t  +  3 r d  +  5 t h  +  7 t h  +  9 t h  +  1 1 t h  +  1 3 t h

Continuing on to the 35th harmonic, the resultant sum looks like a square wave with ripples at 
each rising and falling edge:

All  odd-numbered harmoni  s up  to  the  35th

If we were to  continue  adding successive terms in this infinite series, the  resulting superposition 
of sinusoids would look more and more like a perfect square wave.
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1884 C H A P T E R  24. M A C H I N E  V I B R A T I O N  M E A S U R E M E N T

The only real question in any practical application is, “What are the A ,  B ,  and ω coefficient 
values necessary to describe a particular non-periodic waveform using a Fourier series?” Fourier’s 
theorem tells us we should be able to represent any periodic waveform – no matter what its shape
– by summing together a particular series of sinusoids of just the right amplitudes and frequencies, 
but actually determining those amplitudes and frequencies is a another matter entirely. Fortunately, 
modern computational techniques such as the Fast Fourier T ransform (or F F T  )  algorithm make  
it very easy to sample any periodic waveform and have a digital computer calculate the relative 
amplitudes and frequencies of its constituent harmonics.  The result of a F F T  analysis is a summary 
of the amplitudes, frequencies, and (in some cases) the phase angle of each harmonic.

To illustrate the relationship between a waveform plotted with respect to time versus a Fourier
analysis showing component frequencies, I  will show a pair of Fourier spectrum plots for two 
waveforms – one a perfect sinusoid and the other a non-sinusoidal waveform. First, the perfect 
sinusoid:

0 dB

-20 dB

-40 dB

-60 dB

-80 dB

-100 dB

-120 dB

1 4 5    6    7  8 9 102 3

Frequency

1st har monic

Time-domain plot

Time

Fourier spectrum 
(frequency-domain plot)

Fourier spectra are often referred to as frequency-domain plots because the x-axis (the “domain” 
in mathematical lingo) is frequency. A  standard oscilloscope-type plot is called a time-domain plot 
because the x-axis is time.  In this first set of plots, we see a perfect sine wave reduced to a single 
peak on the Fourier spectrum, showing a signal with only one frequency (the fundamental, or 1st 
harmonic). Here, the Fourier spectrum is very plain because there is only one frequency  to display. 
In other words, the Fourier series for this perfect sinusoid would be:

f  (ωt) =  0 cos ωt +  1 sin ωt +  0 cos 2ωt +  0 sin 2ωt +  · · · 0 cos nωt +  0 sin nωt

Only the B 1  coefficient has a non-zero value.  All  other coefficients are zero because it only takes 
one sinusoid to perfectly represent this waveform.
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24.1.  V I B R A T I O N  P H Y S I C S 1885

Next, we will examine the Fourier analysis of a non-sinusoidal waveform:

0 dB
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1 4 5    6    7  8 9 102 3
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Fourier spectrum 
(frequency-domain plot)

In this second set of plots, we see the waveform is similar to a sine wave, except that it appears 
“clipped” at the peaks. This waveform is  obviously  not  a  perfect  sinusoid,  and therefore cannot 
be described  by just one of the  terms  (sin ωt)  in a  Fourier  series. It can,  however, be described 
as equivalent to a series of perfect sinusoids summed together.  In this case, the Fourier spectrum 
shows one sinusoid at the fundamental frequency, plus another (smaller) sinusoid at three times the 
fundamental frequency (3ω), plus another (yet smaller) sinusoid at the 5th harmonic and another 
(smaller still!) at the 7th: a series of odd-numbered harmonics.

If each of these harmonics is in phase with each other5, we could write the Fourier series as a set 
of sine terms:

f  (ωt) =  (0 dB) sin ωt +  (−65 dB) sin 3ωt +  (−95 dB) sin 5ωt +  (−115 dB) sin 7ωt 

Translating the decibel amplitude values into simple coefficients, we can see just how small these

harmonic sinusoids are in comparison to the fundamental:

f  (ωt) =  1 sin ωt +  0.000562 sin 3ωt +  0.0000178 sin 5ωt +  0.00000178 sin 7ωt

If the waveform deviated even further from a perfect sinusoid, we would see a Fourier spectrum 
with taller harmonic peaks, and perhaps more of them (possibly including some even-numbered 
harmonics, not just odd-numbered), representing a harmonically “richer” spectrum.

Within the technical discipline of machine vibration analysis, harmonic vibrations are often 
referred to by labels such as 1X ,  2X ,  and 3X ,  the integer  number corresponding to  the  harmonic 
order of the  vibration.  The  fundamental,   or   first  harmonic,   frequency  of a  vibration  would 
be represented by “1X”  while “2X”  and “3X”  represent the second- and third-order harmonic 
frequencies, respectively.

5We have no way of knowing this from the Fourier spectrum plot, since that only shows us amplitude (height) and 
frequency (position on the x-axis).
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1886 C H A P T E R  24. M A C H I N E  V I B R A T I O N  M E A S U R E M E N T

On a practical note, the Fourier analysis of a machine’s vibration waveform holds clues to the 
successful balancing of that machine. A  first-harmonic vibration may be countered by placing an off-
center mass on the rotating element 180 degrees out of phase with the offending sinusoid.  Given the 
proper phase (180o  – exactly opposed)  and magnitude, any harmonic may be counterbalanced by 
an off-center mass rotating at the same frequency. In other words, we may cancel any particular 
harmonic vibration with an equal and opposite harmonic vibration.

If you examine the “crankshaft” of a piston engine, for example, you will notice counterweights 
with blind holes drilled in specific locations for balancing. These precisely-trimmed counterweights 
compensate for first-harmonic  (fundamental)  frequency  vibrations  resulting  from  the  up-and- 
down oscillations of the pistons  within the  cylinders. However, in some engine designs  such  as 
inline 4-cylinder arrangements, there are significant harmonic vibrations of greater order than the 
fundamental, which cannot be counterbalanced by any amount of weight, in any location, on the 
rotating crankshaft. The reciprocating motion of the pistons and connecting rods produce periodic 
vibrations that are non-sinusoidal, and these vibrations (like all periodic, non-sinusoidal waveforms) 
are equivalent to a series of harmonically-related sinusoidal vibrations.

Any weight attached to the crankshaft will produce a first-order (fundamental) sinusoidal
vibration, and that is all. In order to counteract harmonic vibrations of higher order, the engine 
requires counterbalance shafts spinning at speeds corresponding to those higher orders. This is why 
many high-performance inline 4-cylinder engines employ counterbalance shafts spinning at twice the 
crankshaft speed: to  counteract the  second-harmonic vibrations created  by the  reciprocating parts. 
If an engine designer were so inclined, he or she could include several counterbalance shafts, each 
one spinning at a different multiple of the crankshaft speed, to counteract as many harmonics as 
possible. At  some point,  however, the inclusion of all these shafts and the gearing necessary to 
ensure their precise speeds and phase shifts would interfere with the more basic design features of 
the engine, which is why you do not typically see an engine with multiple counterbalance shafts.

The harmonic content of a machine’s vibration signal in and of itself tells us little about the 
health or balance of that machine. It  may be perfectly normal for a machine to have a very “rich” 
harmonic signature due to convoluted motions of its parts6. However, Fourier analysis provides a 
simple way to quantify complex vibrations and to archive them for future reference. For example, we 
might gather vibration data on a new machine immediately after installation (including its Fourier 
spectra on all vibration measurement points) and save this data for safe keeping in the maintenance 
archives. Later, if and when we suspect a vibration-related problem with this machine,  we may 
gather new vibration data and compare it against the original “signature” spectra to see if anything 
substantial has changed. Changes in harmonic amplitudes and/or the appearance of new harmonics 
may point to specific problems inside the machine. Expert knowledge is usually required to interpret 
the spectral changes and discern what those specific problem(s) might be, but at least this technique 
does have diagnostic value in the right hands.

6Machines with reciprocating components, such as pistons,  cam followers,  poppet valves,  and such  are  notorious 
for generating vibration signatures which are anything but sinusoidal even under normal operating circumstances!
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24.2. V I B R A T I O N  S E N S O R S

24.2 V i b rat i o n  sensors

1887

Sensors used to measure vibration come in three basic types: displacement, velocity, and acceleration. 
Displacement sensors measure changes in distance between a machine’s rotating element and its 
stationary housing (frame).  Displacement sensors come in the form of a probe that threads into a 
hole drilled and tapped in the machine’s frame, just above the surface of a rotating shaft.  Velocity 
and acceleration sensors, by contrast, measure the velocity or acceleration of whatever element the 
sensor is attached to, which is usually some external part of the machine frame7.

Sensor  

wires

Time

Far

Near

Displacement 
sensor signal 
x = D cos t

Time

Retreating

Approaching

Velocity 
sensor signal 
v = -D sin t

Time

Approaching

Acceleration 
sensor  signal 
a = -2D cos t

Retreating

   Rotating machine
component

A  design of displacement sensor manufactured by the Bently-Nevada corporation uses 
electromagnetic eddy current technology to sense the distance between the probe tip and the rotating 
machine shaft. The sensor itself is an encapsulated coil  of wire, energized with high-frequency

7From the perspective of measurement, it would be ideal to affix a velocimeter or accelerometer  sensor  directly to 
the rotating element of the machine, but this leads to the problem of electrically connecting the (now rotating!) sensor 
to stationary analysis equipment. Unless the velocity or acceleration sensor is wireless, the only practical mounting 

location is on the stationary frame of the machine.
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1888 C H A P T E R  24. M A C H I N E  V I B R A T I O N  M E A S U R E M E N T

alternating current (AC).  The magnetic field produced  by the  coil induces  eddy currents in the 
metal shaft of the machine, as though the metal piece were a short-circuited secondary coil of a 
transformer (with the probe’s coil as the transformer primary winding). The closer the shaft moves 
toward the sensor tip, the tighter the magnetic coupling between the shaft and the sensor coil, and 
the stronger the eddy currents.

The high-frequency oscillator circuit providing the sensor coil’s excitation signal becomes loaded 
by the induced eddy currents. Therefore, the  oscillator’s load  becomes a direct indication of how 
close the probe tip is to the metal shaft. This is not unlike the operation of a metal detector: 
measuring the proximity of a wire coil to any metal object by the degree of loading caused by eddy 
current induction.

In the Bently-Nevada design, the oscillator circuit providing sensor  coil excitation is called a
proximitor. The proximitor module is powered by an external D C  power source, and drives the 
sensor coil through a coaxial cable. Proximity to the metal shaft is represented by a D C  voltage

1000
output from the proximitor module, with 200 millivolts per mil (1 mil = 1   inch) of motion being

Steel shaft
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AC magnetic field
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Rotation

Eddy 
currents

Proximitor  
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Out   Com    -V

Vibration 
(displacement)  

signal
(200 mV per mil)

Since the proximitor’s output voltage is a direct representation of distance between the  probe’s 
tip and the shaft’s surface, a “quiet” signal (no vibration) will be a pure D C  voltage. The probe is 
adjusted by a technician such that this quiescent voltage will lie between the proximitor’s output 
voltage range limits. Any vibration of the shaft will cause the proximitor’s output voltage to vary in 
precise step.  A  shaft vibration of 28.67 Hz, for instance, will cause the proximitor output signal to 
be a 28.67 Hz waveform superimposed on the D C  “bias” voltage set by the initial probe/shaft gap.
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24.2.  V IB R AT ION  S E NS O R S 1889

An oscilloscope connected to this output signal will show a direct representation of shaft vibration, 
as measured in the axis of the probe. In fact, any electronic test equipment capable of analyzing 
the voltage signal output by the proximitor may be used to analyze the machine’s vibration: 
oscilloscopes, spectrum analyzers, peak-indicating voltmeters, RMS-indicating voltmeters, etc.

Photographs of a Bently-Nevada displacement sensor (sensing  axial vibration on a  “ring” style 
air compressor) and two proximitor modules are shown here:
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It  is customary to arrange a set of three displacement probes at the end of a machine shaft to 
measure vibration: two radial probes and one axial (or thrust )  probe. The purpose of this triaxial 
probe configuration is to measure shaft vibration (and/or shaft displacement) in all three dimensions:

Machine shaft

Y axis

X axis

Z axis

Radial probe

Radial probe

Thrust probe

The following photograph shows two displacement probes sensing vibration in the X  and Y  radial 
axes for a large vertical-shaft hydroelectric power plant turbine at Grand Coulee Dam:
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It is also common to see one phase reference probe installed on the machine shaft, positioned in 
such a way that it detects the periodic passing of a keyway or other  irregular feature on the  shaft. 
The “keyphasor” signal will consist of one large pulse per revolution:

Rotation

Eddy 
currents

Proximitor  
module

Keyway

Phase  
signal

Out   Com    -V

The purpose of a keyphasor signal is two-fold: to provide a reference point in the machine’s 
rotation to correlate other vibration signals against, and to provide a simple  means of measuring 
shaft speed. The location in time of the pulse represents shaft position, while the frequency of that 
pulse signal represents shaft speed.

For instance, if one of the radial displacement sensors indicates a high vibration at the same 
frequency as the shaft rotation (i.e. the shaft is bowed in one direction, like a banana spinning on its 
long axis), the phase shift between the vibration’s sinusoidal peak and the phase reference pulse will 
indicate to maintenance machinists where the machine is out of balance. This is not unlike automatic 
tire-balancing machines designed to measure imbalance in automobile tire and wheel assemblies: the 
machine must have some way of indicating to the human operator where a balancing weight should 
be placed, not just how far out of balance the tire is. In the case of machine vibration monitoring 
equipment, the keyphasor signal and one of the axial displacement signals may be simultaneously 
plotted on a dual-trace oscilloscope for the  purposes  of determining the  position of the  imbalance 
on the machine shaft.
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24.3 Monitor ing  hardware

The following photograph shows a large air blower in a wastewater treatment facility equipped with 
a Bently-Nevada model 3300 vibration monitoring rack (located left-center on the foreground panel):

Five vibration measurement and display cards are installed in this rack, each card capable of 
processing up to two displacement sensor signals. A  six-channel temperature monitor card is also 
installed in the  rack, used to  display bearing and other  machine  component  temperatures.   Like 
the vibration cards, the temperature card is capable of generating both “alert” and “trip” signals, 
monitoring the presence of slightly abnormal conditions and taking automatic shut-down action in 
the event of excessively abnormal conditions, respectively.

A  closer view of a different Bently-Nevada model 3300 vibration monitoring rack is shown in this 
photograph:

Each “card” inserted into this rack performs a different measurement function.
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24.3.  MON IT O R ING  HA R DWA R E  1893

The following photographs show even closer views of the cards, revealing the display bargraphs 
and the units of measurement. From left to right; thrust measurement, vibration measurement, 
temperature measurement (6 channels), and speed measurement:

BNC-style cable connectors on the front of the cards provide convenient connection points for 
electronic test equipment such as oscilloscopes or spectrum analyzers. This eliminates the need to un-
do wire connections on the proximitor units in order to take diagnostic measurements. Each card also 
provides “alert” and “danger” levels for their respective measurements, generating a contact- closure 
signal which may be connected to an automatic shutdown (“trip”) system to take protective action if 
vibration or thrust displacement ever exceeds pre-set limits.
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Another variety of vibration monitoring hardware is the Bently-Nevada 1701 FieldMonitor. This 
hardware lacks the convenient front-panel displays of the model 3300, opting instead to communicate 
vibration data in digital form to an Allen-Bradley programmable logic controller ( P L C ) .  Not only 
does this make it possibly to display the vibration data remotely through HMI (Human-Machine 
Interface) panels,  but it also  enables vibration data to  engage automatic “trip” logic programming 
in the P L C  to shut the machine down in the event of excessive vibration.  This next photograph 
shows several FieldMonitor modules plugged into a rack, acquiring displacement data from eight 
proximity probes ( X  and Y  axis radial measurements at three machine bearing locations, plus one 
axial (thrust) measurement and one phase reference measurement):
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24.4 Mechanical  v ibrat ion  switches

1895

A  much simpler alternative to continuous vibration sensors (displacement or acceleration) and 
monitoring equipment suitable for less critical applications is a simple mechanical switch actuated by 
a machine’s vibration. These switches cannot, of course, quantitatively analyze machine vibrations, 
but they do serve as qualitative indicators of gross vibration.

The following photograph shows a Robertshaw “Vibraswitch” unit:

This switch works on the principle of a weighted lever generating a force when shaken. A  pair of 
magnets located at the weighted end of the lever hold it in either the “reset” (normal) or “tripped” 
position:

When reset, the lever is pre-loaded by spring tension  to  flip to  the  “tripped” position. All it 
needs to make that transition is enough acceleration to generate the “breakaway” force necessary to 
pull away from the holding magnet. Once the acceleration force exceeds that threshold, the lever 
moves toward the other magnet, which holds it securely in position so that switch will not “reset” 
itself with additional vibration.
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This pre-loading spring is adjustable by a small screw, making it possible to easily vary the 
sensitivity of the switch:

24.5 Rev i ew  of fundamental  principles

Shown here is a partial listing of principles applied in the  subject matter of this chapter,  given for 
the purpose of expanding the reader’s view of this chapter’s concepts and of their general inter- 
relationships with concepts elsewhere in the book. Your abilities as a problem-solver  and  as  a life-
long learner will be greatly enhanced by mastering the applications of these principles to a wide 
variety of topics, the more varied the better.

• Newton’s  Second L a w  of motion: F  =  ma, describing how the acceleration of an object is 
directly proportional to the amount of applied (resultant) force and inversely  proportional to 
its mass. Relevant to the calculation of force developed on a machine part from the acceleration 
and deceleration of vibration.

• Differentiation  (calculus):  where one variable is proportional to the rate-of-change of two 
others. Differentiation always results in a division (quotient) of units. Relevant to conversion 
from position to velocity, and from velocity to acceleration: v =  d x  and a =  dv .

dt dt

• Integration (calculus) :  where one variable is proportional to the  accumulation  of the 
product of two others. Integration always results in a multiplication of∫units. Releva∫nt to 

conversion from acceleration to velocity, and from velocity to position: v =  adt and x  =  vdt.

• Fourier  transforms: any repetitive waveform, no matter what its shape, is mathematically 
equivalent to a series of sinusoidal (sine and cosine) waves of different frequencies, amplitudes, 
and phase shifts added together. The frequencies of these sinusoids are all integer multiples, 
called harmonics. Relevant to decomposing vibrational wave signals into their constituent 
harmonic frequencies, to determine which parts of a machine are vibrating most.
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