Field Effect Controlled Thyristors

Two relatively recent technologies designed to reduce the “driving” (gate trigger current) requirements of classic thyristor devices are the MOS-gated thyristor and the MOS Controlled Thyristor, or MCT. The MOS-gated thyristor uses a MOSFET to initiate conduction through the upper (PNP) transistor of a standard thyristor structure, thus triggering the device. Since a MOSFET requires negligible current to “drive” … Read more

Programmable Unijunction Transistor (PUT) Basic Construction Working and Symbol

Although the unijunction transistor is listed as obsolete (read expensive if obtainable), the programmable unijunction transistor is alive and well. It is inexpensive and in production. Though it serves a function similar to the unijunction transistor, the PUT is a three terminal thyristor. The PUT shares the four-layer structure typical of thyristors shown in Figure below. … Read more

Optothyristor and Its Types

Like bipolar transistors, SCRs and TRIACs are also manufactured as light-sensitive devices, the action of impinging light replacing the function of triggering voltage. Optically-controlled SCRs are often known by the acronym LASCR, or Light Activated SCR. Its symbol, not surprisingly, looks like Figure below. Light activated SCR Optically-controlled TRIACs don’t receive the honor of having their own acronym, but instead … Read more

Gas Discharge Tubes and Hysteresis

If you’ve ever witnessed a lightning storm, you’ve seen electrical hysteresis in action (and probably didn’t realize what you were seeing). The action of strong wind and rain accumulates tremendous static electric charges between cloud and earth, and between clouds as well. Electric charge imbalances manifest themselves as high voltages, and when the electrical resistance … Read more

Hysteresis and Thyristors

Thyristors are a class of semiconductor components exhibiting hysteresis, that property whereby a system fails to return to its original state after some cause of state change has been removed. A very simple example of hysteresis is the mechanical action of a toggle switch: when the lever is pushed, it flips to one of two extreme … Read more

JFET Active Mode Operation

JFETs, like bipolar transistors, are able to “throttle” current in a mode between cutoff and saturation called the active mode. To better understand JFET operation, let’s set up a SPICE simulation similar to the one used to explore basic bipolar transistor function: jfet simulation vin 0 1 dc 1 j1 2 1 0 mod1 vammeter 3 2 … Read more

7 Points that Should be Considered when Using BJTs

An ideal transistor would show 0% distortion in amplifying a signal. Its gain would extend to all frequencies. It would control hundreds of amperes of current, at hundreds of degrees C. In practice, available devices show distortion. Amplification is limited at the high frequency end of the spectrum. Real parts only handle tens of amperes … Read more

Common Emitter vs Common Collector vs Common Base vs Cascode Amplifier Comparison

Input impedance varies considerably with the circuit configuration shown in Figure below. It also varies with biasing. Not considered here, the input impedance is complex and varies with frequency. For the common-emitter and common-collector it is base resistance times β. The base resistance can be both internal and external to the transistor. For the common-collector:   … Read more

Feedback – What is Feedback, Types and Application of Feedback in Amplifiers

If some percentage of an amplifier’s output signal is connected to the input, so that the amplifier amplifies part of its own output signal, we have what is known as feedback. Feedback comes in two varieties: positive (also called regenerative), and negative (also called degenerative). Positive feedback reinforces the direction of an amplifier’s output voltage change, while negative feedback does just the … Read more